Search results for "harmoninen analyysi"

showing 10 items of 14 documents

Uniform rectifiability implies Varopoulos extensions

2020

We construct extensions of Varopolous type for functions $f \in \text{BMO}(E)$, for any uniformly rectifiable set $E$ of codimension one. More precisely, let $\Omega \subset \mathbb{R}^{n+1}$ be an open set satisfying the corkscrew condition, with an $n$-dimensional uniformly rectifiable boundary $\partial \Omega$, and let $\sigma := \mathcal{H}^n\lfloor_{\partial \Omega}$ denote the surface measure on $\partial \Omega$. We show that if $f \in \text{BMO}(\partial \Omega,d\sigma)$ with compact support on $\partial \Omega$, then there exists a smooth function $V$ in $\Omega$ such that $|\nabla V(Y)| \, dY$ is a Carleson measure with Carleson norm controlled by the BMO norm of $f$, and such th…

Dirichlet problemosittaisdifferentiaaliyhtälötPure mathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsepsilon-approximabilityBoundary (topology)Codimensionharmonic measureharmoninen analyysiMeasure (mathematics)uniform rectifiabilityCarleson measureMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsNorm (mathematics)solvability of the Dirichlet problemClassical Analysis and ODEs (math.CA)FOS: MathematicsAlmost everywhereRectifiable setCarleson measure estimateAnalysis of PDEs (math.AP)MathematicsBMO
researchProduct

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

A Cornucopia of Carnot groups in Low Dimensions

2022

Abstract Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invaria…

Mathematics - Differential GeometryApplied Mathematicsnilpotent Lie algebrasLien ryhmätfree nilpotent groupsharmoninen analyysistratified groupsdifferentiaaligeometria510 MathematicsDifferential Geometry (math.DG)Carnot groupsFOS: Mathematicsexponential coordinatesGeometry and Topologyassociated Carnot-graded Lie algebra53C17 43A80 22E25 22F30 14M17Analysis
researchProduct

Polynomial and horizontally polynomial functions on Lie groups

2022

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $\mathfrak g$ of left-invariant vector fields on a Lie group $\mathbb G$ and we assume that $S$ Lie generates $\mathfrak g$. We say that a function $f:\mathbb G\to \mathbb R$ (or more generally a distribution on $\mathbb G$) is $S$-polynomial if for all $X\in S$ there exists $k\in \mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous defini…

Mathematics - Differential GeometryLeibman Polynomialnilpotent Lie groupsApplied Mathematicspolynomithorizontally affine functionsryhmäteoriaMetric Geometry (math.MG)polynomial mapsGroup Theory (math.GR)harmoninen analyysiFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)precisely monotone setsFOS: Mathematicspolynomial on groupsMathematics - Group TheoryAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Gradient estimates for heat kernels and harmonic functions

2020

Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…

Mathematics - Differential GeometryPure mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)Sobolev inequalitydifferentiaaligeometriaRiesz transformsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryLi-Yau estimates0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsRiesz transformosittaisdifferentiaaliyhtälötSemigroupDirichlet form010102 general mathematicsMetric Geometry (math.MG)harmoninen analyysiheat kernelsDifferential Geometry (math.DG)Harmonic functionMathematics - Classical Analysis and ODEssymbolspotentiaaliteoria010307 mathematical physicsIsoperimetric inequalityharmonic functionsAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

A proof of Carleson's 𝜀2-conjecture

2021

In this paper we provide a proof of the Carleson 𝜀2-conjecture. This result yields a characterization (up to exceptional sets of zero length) of the tangent points of a Jordan curve in terms of the finiteness of the associated Carleson 𝜀2-square function. peerReviewed

Mathematics::Complex Variablessquare functiontangentJordan curveMathematics::Classical Analysis and ODEsrectifiabilitymittateoriaharmoninen analyysi
researchProduct

The variation of the maximal function of a radial function

2017

We study the problem concerning the variation of the Hardy-Littlewood maximal function in higher dimensions. As the main result, we prove that the variation of the non-centered Hardy-Littlewood maximal function of a radial function is comparable to the variation of the function itself.

Mathematics::Functional Analysis42B25 46E35 26A45maximal functionGeneral Mathematicsta111010102 general mathematicsMathematics::Classical Analysis and ODEsradial functionharmoninen analyysi01 natural sciences010101 applied mathematicsCombinatoricsRadial functionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Maximal operatorMaximal function0101 mathematicsfunktionaalianalyysi42B25Variation (astronomy)26A45MathematicsArkiv för Matematik
researchProduct

On a Continuous Sárközy-Type Problem

2022

Abstract We prove that there exists a constant $\epsilon&amp;gt; 0$ with the following property: if $K \subset {\mathbb {R}}^2$ is a compact set that contains no pair of the form $\{x, x + (z, z^{2})\}$ for $z \neq 0$, then $\dim _{\textrm {H}} K \leq 2 - \epsilon $.

Szemerédi’s theoremfractalsGeneral Mathematicspolynomitpolynomial configurationsHausdorff dimensionfraktaalitmittateoriafinite fieldsharmoninen analyysiFourier transforms of measuresminimeasuresInternational Mathematics Research Notices
researchProduct

Rungen lause ja sovelluksia inversio-ongelmiin

2018

funktioteoriamatka-aikatomografiakuvantaminenRungen lauseharmonic analysismatemaattiset mallitCalderónin ongelmaharmoninen analyysidifferentiaaliyhtälötGel’fandin ongelmainversio-ongelmat
researchProduct